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Abstract: We investigated the effect of royal jelly (RJ), a natural secretion from worker bees, on the
endurance training-induced mitochondrial adaptations in skeletal muscles of ICR mice. Mice received
either RJ (1.0 mg/g body weight) or distilled water for three weeks. The mice in the training group
were subjected to endurance training (20 m/min; 60 min; 5 times/week). There was a main effect
of endurance training on the maximal activities of the mitochondrial enzymes, citrate synthase
(CS), and β-hydroxyacyl coenzyme Adehydrogenase (β-HAD), in the plantaris and tibialis anterior
(TA) muscles, while no effect of RJ treatment was observed. In the soleus muscle, CS and β-HAD
maximal activities were significantly increased by endurance training in the RJ-treated group,
while there was no effect of training in the control group. Furthermore, we investigated the effects
of acute RJ treatment on the signaling cascade involved in mitochondrial biogenesis. In the soleus,
phosphorylation of 5′-AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC)
were additively increased by a single RJ treatment and endurance exercise, while only an exercise
effect was found in the plantaris and TA muscles. These results indicate that the RJ treatment induced
mitochondrial adaptation with endurance training by AMPK activation in the soleus muscles of
ICR mice.

Keywords: endurance training; mitochondrial enzymes; phospho-AMPK; royal jelly; skeletal muscle

1. Introduction

Mitochondria are important organelles that produce the adenosine triphosphate (ATP) required
for the contraction of skeletal muscles. It is well known that endurance exercise promotes
mitochondrial biogenesis in skeletal muscles [1]. As the mitochondrial oxidative capacity is related
to glycogen-sparing [2], many athletes try to stimulate the mitochondrial adaptations in the skeletal
muscles with daily training. Moreover, decreased mitochondrial content has been associated with
some metabolic diseases like insulin resistance and obesity [3] and sarcopenia [4]. Therefore, it is of
general interest to increase mitochondrial content to maintain good health and a high quality of life.
Any additional method to increase the mitochondrial content might be greatly beneficial to both the
athletes looking to improve their performance, as well as the common people to maintain their health.
In particular, individuals with decreased mobility, obesity, injuries, and other ailments that limit their
ability to perform training will benefit from finding an efficient way to increase the mitochondrial
content through endurance activities.
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Royal jelly (RJ), which is produced by the worker honeybees serves as the food for queen bees for
their growth and contains many nutrients including vitamins, minerals, fatty acids, carbohydrates,
and proteins/amino acids. Some ingredients contained in RJ have been reported to have a potential
for stimulating mitochondrial adaptation in skeletal muscles. For example, supplementation of the
protein supplements (including hydrolysate of the protein or peptides) or amino acids enhanced
the mitochondrial biogenesis concomitant with the endurance exercise training [5,6]. One possible
target of the protein and/or amino acids supplementation is 5′-AMP-activated protein kinase (AMPK),
an energy sensor of the cells and a key regulator of mitochondrial biogenesis. Previous reports
suggested that leucine [7] and casein peptide [6,8] activate AMPK in skeletal muscles. In addition to
amino acids and protein, 10-hydroxy-2-decenoic acid, a unique medium-chain fatty acid present in RJ,
was shown to activate AMPK in skeletal muscles [9–11]. Therefore, it is possible that RJ treatment is
effective for inducing mitochondrial adaptation in skeletal muscles during endurance training.

Mammalian skeletal muscles are mainly composed of three different fiber types that are
distinguished through histochemical staining: type I (commonly referred to as slow-twitch and
oxidative muscle fiber), type IIA (fast-twitch and oxidative muscle fiber), and type IIB or type
IIX (fast-twitch and glycolytic muscle fiber). A previous study showed that the increase in the
mitochondrial enzymatic activity by chronic stimulation-induced contraction was greater in the
low-oxidative muscles compared to the high-oxidative muscles [12]. This result showed the possibility
that the high-oxidative muscles have a higher threshold to induce mitochondrial adaptations compared
with the low-oxidative muscles. Meanwhile, casein peptide supplementation with endurance
training induced mitochondrial adaptations in the soleus muscle (mainly consists type I and IIA
fibers), while endurance training alone did not induce mitochondrial adaptation [6]. In that study,
casein peptide did not potentiate the mitochondrial adaptations in the plantaris muscle (mainly consists
type IIB and IIX fibers), in which the maximal activities of mitochondrial enzymes were increased
by endurance training alone. Collectively, the possibility exists that RJ treatment combined with
endurance training might lead to different results among skeletal muscles with discrete compositions
of fibers. Therefore, we investigated the effects of RJ treatment in the soleus muscle (type I: around
35–45%, type IIA: around 35–50%), and the plantaris and tibialis anterior (TA) muscles (the sum of the
percentage of type IIB and type IIX fiber types is around 90%) [13–15].

In the present study, we investigated the effects of RJ treatment on the mitochondrial adaptations
induced by endurance training in skeletal muscles. Moreover, we also examined the acute effects
of RJ treatment on the phosphorylation of the signaling cascade proteins related to mitochondrial
adaptations in skeletal muscles.

2. Materials and Methods

2.1. Animals

Nine-week-old male ICR mice were purchased from CLEA Japan, Inc. (Tokyo, Japan) and were
housed in a room maintained at 23 ◦C with three mice per cage. The mice were acclimatized for
1 week. The mice were provided with free access to a standard chow (MF; 3.6 kcal/g, 60% kcal from
carbohydrate, 13% kcal from fat, 27% kcal from protein; Oriental Yeast, Tokyo, Japan). All procedures
performed in this study involving animals were in accordance with the ethical standards of the
Committee on Animal Care and Use, The University of Tokyo. All the protocols of research on animals
were approved by this committee (Approval number: 24-4). The dark phase was set to 07:00–19:00,
and all the experimental treatments were performed in this phase when the mice were active.
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2.2. Experimental Procedures

2.2.1. Chronic Experiment

Three days before the first experimental day, all the mice were familiarized with the treadmill
exercise at a speed of 20 m/min for 10 min. The mice with similar mean body weights were then
divided into four groups: a control sedentary (Con + Sed) group (n = 8), a control training (Con +
Tr) group (n = 6), a RJ-treated sedentary (RJ + Sed) group (n = 7), and a RJ-treated training (RJ + Tr)
group (n = 7). The mice were then housed individually in standard cages. Mice in the RJ-treated
group were orally administered with royal jelly (1.0 mg/g body weight) dissolved in distilled water,
while the control group mice received distilled water alone every day at 10–12 a.m. The amount of
royal jelly used in this study is comparable to that used in a previous study that used RJ mixed with
the chow diet [16]. The freeze-dried royal jelly powder standardized to contain a minimum of 3.85%
(E)-10-hydroxy-2-decenoic acid and 0.67% of 10-hydroxydecanoic acid was obtained from Yamada Bee
Co., Inc. (Okayama, Japan). The nutritional information of freeze-dried royal jelly powder is listed
in Table 1. The volume of ingestion was 0.01 mL/g body weight. Mice in the training group started
running on the treadmill at a speed of 20 m/min for 60 min after 30–60 min of the oral administration
(5 times/week). After three weeks of treatment and 24–28 h post-administration of the final dose,
the mice were sacrificed under anesthesia and the tissues were harvested. Blood was drawn from
the caudal vena cava and was centrifuged in the presence of heparin. The obtained plasma and the
skeletal muscles of the lower hind limb were quickly frozen in liquid nitrogen and stored at −80 ◦C till
further use.

Table 1. Composition of the freeze-dried royal jelly powder (per 100 g)

Macronutrients Royal Jelly Specific Fatty Acids
Water 2.2 g (E)-10-hydroxy-2-decenoic acid 4.3%

Protein 40.9 g 10-hydroxydecanoic acid 0.94%
Fat 5.5 g

Minerals 2.8 g
Ash 2.8 g

Carbohydrate 48.6 g
Calories 408 kcal

Amino Acids Free Amino Acids
Arginine 2.01 g Free Arginine 0.07 g

Lysine 2.83 g Free Lysine 0.67 g
Histidine 1.07 g Free Histidine 0.02 g

Phenylalanine 1.70 g Free Phenylalanine 0.004 g
Tyrosine 1.65 g Free Tyrosine 0.006 g
Leucine 2.88 g Free Leucine 0.005 g

Isoleucine 1.83 g Free Isoleucine 0.005 g
Methionine 1.03 g Free Methionine not detected

Valine 2.09 g Free Valine 0.01 g
Alanine 1.20 g Free Alanine 0.01 g
Glycine 1.29 g Free Glycine 0.01 g
Proline 1. 69 g Free Proline 0.67 g

Glutamic acid 3.84 g Free Glutamic acid 0.14 g
Serine 2.31 g Free Serine 0.004 g

Threonine 1.72 g Free Threonine 0.002 g
Aspartic acid 6.82 g Free Aspartic acid 0.006 g
Tryptophan 0.49 g Free Tryptophan not detected

Cysteine 0.40 g Free Cysteine not detected

2.2.2. Acute Experiment

After the acclimatization with treadmill exercise in the same manner as the chronic experiment,
the mice with similar mean body weights were divided into four groups: a control sedentary group
(n = 7), a control exercise group (n = 7), RJ-treated sedentary group (n = 6), and RJ-treated exercise
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group (n = 7). On the experimental day, the mice were orally administered RJ dissolved in distilled
water or distilled water alone as mentioned in the chronic experiment. After 30 min, the mice in the
exercise group were subjected to running at 20 m/min for 60 min, while the mice in the sedentary
group were kept at rest for 60 min. Following the exercise/rest period, the mice were sacrificed under
anesthesia and then tissues were harvested.

2.3. Analytical Methods

2.3.1. Muscle Homogenization

Protein isolation from the muscles was performed as described previously [17]. Skeletal muscles
were homogenized in a radio immunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl (pH 7.4),
150 mM NaCl, 0.25% deoxycholic acid, 1% NP-40, and 1 mM ethylenediaminetetraacetic acid (EDTA))
supplemented with protease inhibitor mixture (cOmplete Mini, EDTA-free, Roche Applied Science,
Mannheim, Germany), and phosphatase inhibitor mixture (PhosSTOP, Roche Applied Science).
After centrifugation at 600× g for 20 min at 4 ◦C, the supernatants were collected, and their protein
concentrations were determined by the bicinchoninic acid (BCA) assay (Thermo Fisher Scientific,
Waltham, MA, USA). The supernatants were diluted with a RIPA buffer.

2.3.2. Mitochondrial Enzyme Activity

The maximal activity of citrate synthase (CS) was determined via the addition of oxaloacetate
to a buffer solution containing the muscle homogenates (1:100 dilution), DTNB (5,5′-dithiobis
(2-nitrobenzoic acid)), and acetyl coenzyme A (CoA) in 100 mM Tris-HCl buffer (pH = 8.3) [18]. The rate
change in absorbance (412 nm) was monitored over 180 s with readings every 30 s. The maximal
activity of β-hydroxyacyl CoA dehydrogenase (β-HAD) was determined by addition of acetoacetyl
CoA to a buffer solution containing the muscle homogenates (1:100 dilution), nicotinamide adenine
dinucleotide (NADH), and EDTA in 50 mM Tris-HCl buffer (pH = 7.0) [19]. The rate change in
absorbance (340 nm) was monitored over 180 s with readings every 20 s.

2.3.3. Western Blotting

Western blotting was performed as described previously [17,20]. The protein samples (5–10 µg)
and a pre-stained molecular weight marker (Bio-Rad, Hercules, CA, USA) were run on 7.5%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels for 60 min at 150 V.
The proteins were then transferred from the gels to Hybond-P polyvinylidene difluoride transfer
membranes (GE Healthcare Japan, Tokyo, Japan) for 75 min at 100 V. The membranes were then
blocked with 5% (w/v) skim milk or 3% (w/v) bovine serum albumin (BSA) in tris buffered saline
(TBS)-T (20 mM Tris base, 137 mM NaCl, 0.1 mM HCl, and 0.1% (v/v) Tween 20, pH = 7.5) for
60 min at room temperature. The membranes were incubated with the primary antibody in tris
buffered saline with TBS-T (1:1000 or 1:2000 dilution) with 5% BSA overnight at 4 ◦C. Subsequently,
the membranes were incubated for 60 min at room temperature with goat-anti-rabbit IgG (American
Qualex, San Clemente CA, USA) in TBS-T (1:4000 dilution). The proteins were detected using Pierce
ECL Western Blotting Substrate (Thermo Fisher Scientific) and visualized using the ChemiDoc system
(Bio-Rad). Densitometric analyses of the captured images were performed using Bio-Rad Quantity
One software (version 4.6.1). All the membranes were stained with Ponceau-S solution (P7170-1L;
Sigma-Aldrich, St. Louis, MO, USA) to ensure equal loading of the proteins. The antibodies used in
this study were anti-AMP-activated protein kinase (AMPK, #5832; Cell Signaling Technology [CST]
Japan, Tokyo, Japan), anti-phosphorylated AMPK (Thr172, #2535; CST), anti-acetyl-CoA carboxylase
(ACC, #3676; CST), anti-phosphorylated ACC (Ser79, #11818; CST), anti-p38 mitogen-activated protein
kinase (p38 MAPK, #9212; CST), and anti-phosphorylated p38 MAPK (Thr180/Tyr182, #9211; CST).
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2.4. Statistical Analysis

All values were expressed as the mean ± standard error. Prism 6 software (GraphPad Software,
San Diego, CA, USA) was used for the statistical analyses. Two-way analysis of variance (RJ treatment
× endurance training or RJ treatment × endurance exercise) was performed to determine the
differences in each parameter. If an interaction was observed, the Tukey–Kramer multiple-comparison
test was performed. Statistical significance was set at p < 0.05.

3. Results

3.1. Chronic Experiment

3.1.1. Food Consumption and Body Weight

The mice were weighed post-treatment and the results suggested that neither the endurance
training nor the RJ treatment had a significant effect on their final body weight at the end of the
experiment. We also observed that there was no significant effect on the food consumption of the mice
upon endurance training and the RJ treatment (Table 2).

Table 2. Body weight and food consumption of mice

Title Con + Sed Group RJ + Sed Group Con + Tr Group RJ + Tr Group

Initial body weight (g) 38.6 ± 0.7 38.1 ± 0.9 37.7 ± 0.8 38.4 ± 0.5
Final body weight (g) 40.5 ± 0.8 40.2 ± 0.7 39.1 ± 0.9 39.3 ± 0.6

∆ body weight (g) 2.0 ± 0.3 2.0 ± 0.5 1.4 ± 0.6 0.9 ± 0.7
Total food consumption

(kcal/g body weight) 9.1 ± 0.2 9.5 ± 0.4 9.1 ± 0.5 9.1 ± 0.5

Values represent mean ± standard error. n = 6–8 per group. Con: control; Sed: sedentary; RJ: royal jelly; Tr: training;
∆ body weight: change in body weight during Chronic experiment.

3.1.2. Maximal Activities of Mitochondrial Enzymes

In the soleus muscle, the results from the biochemical assay to measure the maximal CS activity
demonstrated a significant interaction between the RJ treatment and endurance training (Figure 1A,
p < 0.05). Therefore, we performed the Tukey–Kramer multiple-comparison test. In the RJ group,
the maximal CS activity was significantly increased upon endurance training (p < 0.01), while no
significant effect of endurance training was observed in the control group. The maximal CS activity in
the RJ-treated training group was significantly higher than that in the control sedentary group (p < 0.01)
and tended to be higher than that in the control training group (p = 0.06). There was a significant
positive effect of endurance training on the maximal CS activity in the plantaris (p < 0.05) and tibialis
anterior (TA, p < 0.01) muscles, while no significant effect upon RJ treatment was found (Figure 1B,C).

Next, we measured the maximal activity of β-hydroxyacyl CoA dehydrogenase (β-HAD),
which catalyzes the rate-limiting step of β-oxidation of long-chain fatty acids. In the soleus, we observed
a significant interaction between RJ treatment and endurance training (p < 0.05). The Tukey–Kramer
multiple-comparison test indicated that the maximal activity of β-HAD in the RJ-treated training
group was significantly higher than that in the RJ-treated sedentary group (p < 0.05), while no
significant difference between the control training group and the control sedentary group was observed
(Figure 2A). There was a significant positive effect of endurance training in the TA muscle (p < 0.01).
No significant effect of RJ treatment was observed in the plantaris and TA muscle (Figure 2B,C).
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Figure 1. Maximal activity of citrate synthase in the soleus (A), plantaris (B), and tibialis anterior muscle
(C) of the mice after treatment with royal jelly (RJ-treated group; black) or distilled water (Control group;
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mean ± standard error. n = 6–8 per group. #p < 0.05 and ##p < 0.01, main effect of endurance training.
**p < 0.01, statistical significance vs the RJ-treated sedentary group. ‡‡p < 0.01, statistical significance
between the control sedentary group. n.s.: not significant.
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Figure 2. Maximal activity of β-hydroxyacyl CoA dehydrogenase in the soleus (A), plantaris (B),
and tibialis anterior muscle (C) of mice that treated with royal jelly (RJ-treated group; black) or distilled
water (Control group; white), with or without endurance training for three weeks (Chronic experiment).
Values represent mean ± standard error. n = 6–8 per group. ##p < 0.01, main effect of endurance
training. *p < 0.05, statistical significance vs the RJ-treated sedentary group. n.s.: not significant.

3.2. Acute Experiment

Phosphorylation Status of the Proteins Involved in Mitochondrial Biogenesis

In order to study the role of RJ treatment in mitochondrial biogenesis, we further investigated the
effects of acute RJ treatment combined with endurance exercise on the phosphorylation status of the
crucial signaling proteins. In the soleus, phosphorylation of AMPK was additively increased by a single
RJ treatment (p < 0.05) and a 60 min of endurance exercise (p < 0.05, Figure 3A). Similarly, the levels of
phospho-ACC, the substrate for AMPK, was also found to be increased following RJ treatment (p < 0.05)
and endurance exercise (p < 0.01, Figure 3B). The phosphorylation of p38 MAPK, another crucial
signaling molecule involved in mitochondrial biogenesis, was also significantly increased by endurance
exercise (p < 0.05). However, no significant change in the p-p38 MAPK levels was noted upon RJ
treatment (Figure 3C).
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In the plantaris muscle, we did not observe any significant change in the phosphorylation status
of AMPK, ACC, or p38 MAPK upon RJ treatment. Conversely, the effect of endurance exercise on the
phosphorylated status of ACC (p < 0.01) and p38 MAPK (p < 0.01) was observed (Figure 4A–C).
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group; white) and with or without an endurance exercise (Acute experiment). Values represent mean
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In the TA muscle, the main effect of endurance exercise on p-AMPK (p < 0.01) and p-ACC (p < 0.05)
were noted but there was no change in their levels upon RJ treatment (Figure 5A,B). No significant
main effect of endurance exercise or RJ treatment on the phosphorylation of p38 MAPK was observed
in the TA muscle (Figure 5C). These results indicate that a differential phosphorylation status of the
proteins involved in the mitochondrial biogenesis in different skeletal muscles upon RJ treatment and
endurance training.
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tibialis anterior muscle of mice that treated with a single dose of royal jelly (RJ-treated group; black) or
distilled water (Control group; white) and with or without an endurance exercise (Acute experiment).
Values represent mean ± standard error. n = 6–7 per group. #p < 0.05 and ##p < 0.01, main effect of
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4. Discussion

The main finding of this study is that the oral royal jelly administration had a significant
positive effect on inducing the increase in maximal activity of mitochondrial enzyme by endurance
training in the soleus muscle, which mainly consists of type I and IIA fibers, while no significant
effect of RJ treatment on mitochondrial adaptation was observed in the plantaris and TA muscles,
which predominantly consist of type IIB/IIX fibers. Acute RJ treatment and endurance exercise
additively increased the phosphorylation of AMPK and ACC, a downstream substrate of AMPK, in the
soleus muscle, while no effect of acute RJ treatment was noted in the plantaris and TA muscles.

As the maximal activity of CS, which catalyzes the rate-limiting step of the tri-carboxylic acid
(TCA) cycle, is strongly associated with the mitochondrial content in skeletal muscles [21], it is generally
used as an indicator of mitochondrial oxidative capacity. In the plantaris and TA muscles, the endurance
training had a significant main effect on the maximal CS activity. However, no effect of RJ treatment
was observed in these muscles. On the other hand, we found that the RJ treatment concomitant
with the endurance training increased the maximal CS activity in the soleus muscle, while no change
was observed in the control training group. We observed a similar trend in the maximal activity of
β-HAD, which catalyzes the rate-limiting step of fatty acid β-oxidation. These results suggest that
the endurance exercise was enough to induce mitochondrial enzymatic adaptation in fast-twitch fiber
dominant muscles, while it was contrary in the high-oxidative muscles. A previous study showed
that the increase in the mitochondrial enzymatic activity by chronic stimulation-induced contraction
was greater in the low-oxidative muscles compared to the high-oxidative muscles [12]. Therefore,
the possibility exists that the high-oxidative muscles have a higher threshold to induce mitochondrial
adaptation than the low-oxidative muscles. In the present study, although the endurance exercise
induced significant positive effects on the phosphorylated states of the signaling proteins involved in
mitochondrial biogenesis in the soleus, additional stimulation by RJ treatment was needed to induce
the increase in the maximal mitochondrial enzymatic activities.

Some components contained in RJ such as amino acids/proteins [6,8], particularly leucine [7],
and 10-hydroxy-2-decenoic acid [9–11] which is the unique fatty acid present in RJ have been reported
to induce the activation of AMPK, a major mediator of the mitochondrial biogenesis, in skeletal
muscles, or the myotubes. Meanwhile, RJ contains several components that have been suggested
to have antioxidant property: 10-hydroxydecanoic acid; free amino acids, such as proline, cystine,
and cysteine; flavonoids; and phenolic compounds [22–24]. Previous studies suggested that oxidative
stress plays an important role in AMPK activation in skeletal muscle and then the use of antioxidants
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might affect AMPK activation [25,26]. Moreover, mitochondrial oxidative stress has been suggested
to be involved in calcium handling [27] and influence an activation of Ca2+/calmodulin-dependent
kinase kinase (CaMKK), which is one kind of upstream kinases of AMPK [28]. Therefore, we examined
the effects of a single dose of RJ and endurance exercise on the activation of the AMPK signaling
cascade. In the soleus, RJ treatment additively increased the phosphorylation levels of AMPK and
ACC concomitant with endurance exercise. We also measured the phosphorylation status of p38
MAPK, an activator of mitochondrial biogenesis as well as AMPK, and there was no effect of RJ
treatment in the soleus. Collectively, the effect of RJ treatment on the endurance training-induced
increase in the maximal activities of mitochondrial enzymes in soleus seems to be mediated by the
AMPK signaling amplification. On the other hand, no effect of RJ treatment was observed on the
phosphorylation levels of AMPK signaling cascade proteins in plantaris and TA muscles. Therefore,
the effect of RJ treatment on the activation of AMPK signaling was specific to the soleus muscles,
which predominantly consist of type I and type IIA muscle fibers. Regarding amino acids/proteins,
a previous study that was focused on investigating the effect of oral casein peptide administration
indicated results similar to the present study. They reported that casein peptide treatment increased
the phosphorylation in the AMPK regulatory site in the soleus, while no effect was observed in
the plantaris [6,8]. However, the mechanism behind the effect of these nutrients on the differential
activation levels of AMPK activation in different skeletal muscles with distinct fiber type composition
has not yet been elucidated. Leucine is one of the potential activators of AMPK in skeletal muscles [7].
A previous study showed that the uptake of glutamate, which indicates a simultaneous efflux against
leucine, was lower in the soleus compared with those in flexor digitorum brevis and epitrochlearis muscles,
which are predominantly made of fast-twitch fibers [29]. As the intracellular glutamine contributes to
the leucine uptake as an exchange material, thus the lower glutamine uptake in the soleus would not
induce leucine uptake into muscles. Moreover, a recent study demonstrated that the expression level
of the L-type amino acid transporter 1 (LAT1), which is thought to be a primary transporter of neutral
amino acids including branched chain amino acids (leucine, valine, isoleucine), was higher in the type
II fiber than in the type I fiber [30]. Therefore, it is quite unlikely that the observed differential response
to RJ treatment in soleus, plantaris, and TA muscles is due to the difference in amino acids transport into
the cells (particularly leucine). To date, no study has compared the effect of 10-hydroxy-2-decenoic
acid and other components of RJ on AMPK activation in different muscle fibers. Further studies
are warranted to elucidate the mechanism behind the differential response to the RJ components in
different skeletal muscles with discrete types of muscle fibers.

In the present study, a positive effect of RJ treatment on endurance training-induced mitochondrial
adaptations was observed in the mice soleus muscle, which is mainly composed of type I (around
35–45%) and type IIA (around 35–50%) fibers [13–15]. In human vastus lateralis muscles, which is
frequently used in human studies, the percentage of type I and type IIA fibers correspond to those in
the mice soleus muscle [31,32]. Therefore, the possibility exists that effect of RJ treatment combined
with endurance training might be observed in human skeletal muscles. We provided mice with
1.0 mg/g body weight of RJ for three weeks. It is recommended that the dose of drug or nutrient is
converted across animal species based on the body surface area [33]. According to the calculation
method proposed by Reagan-Shaw et al. [33], an estimated human equivalent dose of RJ used in the
present study is 81.1 mg/kg body weight (4.9 g for 60 kg person). This amount of RJ intake corresponds
to that used in the previous study, in which elderly people received RJ for one year [34]. In that study,
no side effect of RJ intake was reported. To our knowledge, no study has examined the effect of RJ
treatment on endurance training-induced mitochondrial adaptations in human. Further research is
needed to elucidate whether three weeks of RJ treatment with endurance training shows beneficial
effect for inducing mitochondrial adaptations in human.
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5. Conclusions

The present study demonstrates that a RJ treatment stimulates an endurance exercise-induced
increase in the maximal activities of citrate synthase and β-hydroxyacyl CoA dehydrogenase in the
soleus muscles (mainly consists type I and type IIA fibers). The study also reveals the possible role
of AMPK activation upon RJ treatment on mitochondrial adaptations concomitant with endurance
exercise. Moreover, we also demonstrated the difference in response to RJ treatment according to the
difference in the composition of muscle fibers.
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